Что такое спин в физике элементарных частиц. Что такое спин

СПИН продажи – это метод продаж, разработанный Нилом Рэкхемем и описанный им в одноименной книге. Метод СПИН стал одним из самых широко используемых . Применяя данный способ можно добиться очень высоких результатов личных продаж, Нил Рэкхем смог это доказать проведя масштабные исследования. И несмотря, на то что в последнее время многие начали считать что данный метод продаж становится не актуальным, почти все крупные компании используют при обучении продавцов именно технику продаж СПИН.

Что такое СПИН продажи

Если коротко СПИН (SPIN) продажи это способ подведения клиента к покупке путём задавания поочередно определенных вопросов, вы не презентуете товар в открытую, а скорее подталкиваете клиента самостоятельно прийти к решению совершить покупку. Метод СПИН лучше всего подходит для так называемых «длинных продаж», часто это и продажи дорогого или сложного товара. То есть SPIN нужно применять, когда клиенту не просто сделать выбор. Необходимость в данной методике продаж возникла прежде всего благодаря выросшей конкуренции и насыщении рынка. Клиент стал более разборчивым и опытным и это потребовало большей гибкости от продавцов.

Техника продаж СПИН разделяется на следующие блоки вопросов:

  • С итуационные вопросы (Situation)
  • П роблемные вопросы (Problem)
  • И звлекающие вопросы (Implication)
  • Н аправляющие вопросы (Need-payoff)

Сразу стоит отметить, что СПИН продажи достаточно трудозатраты. Дело в том чтобы применять данную технику на практику, нужно очень хорошо знать товар, иметь хороший опыт продаж этого товара, сама по себе такая продажа занимает много времени у продавца. Поэтому СПИН продажи не стоит использовать в массовом сегменте, например в , поскольку если цена покупки невелика, а спрос на товар и так большой, то нет смысла тратить кучу времени на долгое общение с клиентом, лучше потратить время на рекламу и .

СПИН продажи построены на том, что клиент при прямом предложении товара продавцом часто включает защитный механизм отрицания. Покупателям изрядно надоело, что им постоянно, что то продают и реагируют отрицательно уже на сам факт предложения. Хотя товар сам по себе может быть и нужен, просто в момент презентации клиент думает не о том, что товар ему необходим, а о том что зачем ему это предлагают? Применение техники продаж СПИН заставляет клиента принять самостоятельное решение о покупке, то есть клиент даже и не понимает, что его мнением управляют, задавая правильные вопросы.

Техника продаж СПИН

Техника продаж СПИН (SPIN) – это модель продаж, основанная не только на , сколько на их . Другими словами, для успешного применения данной техники продаж, продавец должен уметь задавать правильные вопросы. Для начала разберем отдельно каждую группу вопросов техники продаж СПИН:

Ситуационные вопросы

Этот вид вопросов нужен для полноценного и определения его первичных интересов. Цель ситуационных вопросов выяснить опыт использования клиентом продукта, который вы собираетесь продавать, его предпочтения, для каких целей будет использоваться. Как правило, требуется около 5 открытых вопросов и несколько уточняющих. По итогам этого блока вопросов вы должны раскрепостить клиента и настроить его на общение, именно поэтому стоит уделить внимание открытым вопросам, а так же использовать . Кроме того вы должны собрать всю необходимую информацию для постановки проблемных вопросов, для того чтобы эффективно определить ключевые потребности стоит использовать . Как правило, блок ситуативных вопросов самый долгий по времени. Когда вы получили необходимую информацию от клиента, нужно переходить к проблемным вопросам.

Проблемные вопросы

Задавая проблемные вопросы, вы должны обратить внимание клиента на проблеме. Важно на стадии ситуационных вопросов понять, что важно клиенту. К примеру, если клиент всё время про деньги, то логично будет задавать проблемные вопросы, касающиеся денег: «вас устраивает цена, которую вы платите сейчас?»

Если вы не определились с потребностями, и не знаете, какие проблемные вопросы нужно задавать. Нужно иметь ряд заготовленных, стандартных вопросов затрагивающие разные сложности, с которыми может столкнуться клиент. Ваша основная цель обозначить проблему и главное чтобы она была важна для клиента. Например: клиент может признать, что переплачивает за услуги компании, которой он пользуется сейчас, но его это не волнует, так как для него важно качество услуг, а не цена.

Извлекающие вопросы

Данный тип вопросов направлен на определение того насколько для него эта проблема важна, и что будет если её не решить сейчас. Извлекающие вопросы – должны дать понять клиенту что, решая сложившуюся проблему, он получит пользу.

Сложность извлекающих вопросов заключается в том, что их не продумать заранее, в отличие от остальных. Конечно, с опытом у вас сформируется пул таких вопросов, и вы научитесь их использовать в зависимости от ситуации. Но вот изначально, многие продавцы, осваивающие СПИН продажи, испытывают сложности с задаванием таких вопросов.

Суть извлекающих вопросов сводится к тому, чтобы установить для клиента причин следственную связь между проблемой и её решением. Еще раз хочется отметить, что в СПИН продажах, нельзя сказать клиенту: «наш продукт решит вашу проблему». Вы должны сформировать вопрос так чтобы в ответ клиент сам сказал, что ему поможет решить проблему.

Направляющие вопросы

Направляющие вопросы – должны вам помочь , на этом этапе клиент за вас должен проговорить все выгоды которые он получит от вашего продукта. Направляющие вопросы можно сравнить с позитивным способом завершения сделки, только не продавец суммирует все выгоды, которые получит клиент, а наоборот.

Как в классической, так и в квантовой механике закон сохранения момента возникает как результат изотропии пространства по отношению к замкнутой системе. Уже в этом проявляется связь момента со свойствами симметрии по отношению к вращениям. Но в квантовой механике эта связь становится в особенности глубокой, делаясь по существу основным содержанием понятия о моменте, тем более, что классическое определение момента частицы как произведения теряет здесь свой непосредственный смысл в виду одновременной неизмеримости радиуса-вектора и импульса.

Мы видели в § 28, что задание значений l к определяет угловую зависимость волновой функции частицы, а тем самым - все ее свойства симметрии по отношению к вращениям. В наиболее общем виде формулировка этих свойств сводится к указанию закона преобразования волновых функций при поворотах системы координат.

Неизменной волновая функция системы частиц (с заданными значениями момента L и его проекции М) остается лишь при повороте системы координат вокруг оси . Всякий же поворот, меняющий направление оси , приводит к тому, что проекция момента на ось уже не будет иметь определенного значения. Это значит, что в новых координатных осях волновая функция превратится, вообще говоря, в суперпозицию (линейную комбинацию) функций, отвечающих различным возможным (при заданном L) значениям М. Можно сказать, что при поворотах системы координат функций преобразуются друг через друга. Закон этого преобразования, т. е. коэффициенты суперпозиции (как функции углов поворота координатных осей), полностью определяется заданием значения L. Таким образом, момент приобретает смысл квантового числа, классифицирующего состояния системы по их трансформационным свойствам по отношению к вращениям системы координат.

Этот аспект понятия момента в квантовой механике в особенности существен в связи с тем, что он не связан непосредственно с явной зависимостью волновых функций от углов; закон их преобразования друг через друга может быть сформулирован сам по себе, без ссылки на эту зависимость.

Рассмотрим сложную частицу (скажем, атомное ядро), покоящуюся как целое и находящуюся в определенном внутреннем состоянии. Помимо определенной внутренней энергии она обладает также и определенным по своей величине L моментом, связанным с движением частиц внутри нее; этот момент может еще иметь 2L + 1 различных ориентаций в пространстве. Другими словами, при рассмотрении движения сложной частицы как целого мы должны, наряду с ее координатами, приписывать ей еще и одну дискретную переменную - проекцию ее внутреннего момента на некоторое избранное направление в пространстве.

Но при указанном выше понимании смысла момента становится несущественным вопрос о его происхождении, и мы приходим естественным образом к представлению о «собственном» моменте, который должен быть приписан частице вне зависимости от того, является ли она «сложной» или «элементарной».

Таким образом, в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с ее движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу и поэтому принципиально не допускает классической интерпретации.

Собственный момент частицы называют ее спином, в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Речь может идти при этом как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге явлений как элементарная (например, об атомном ядре). Спин частицы (измеренный, как и орбитальный момент, в единицах й) будем обозначать посредством s.

Для частиц, обладающих спином, описание состояния с помощью волновой функции должно определять не только вероятности ее различных положений в пространстве, но и вероятности различных возможных ориентаций ее спина.

Другими словами, волновая функция должна зависеть не только от трех непрерывных переменных - координат частицы, но и от одной дискретной спиновой переменной, указывающей значение проекции спина на некоторое избранное направление в пространстве (ось ) и пробегающей ограниченное число дискретных значений (которые мы будем обозначать далее буквой ).

Пусть - такая волновая функция. По существу она представляет собой совокупность нескольких различных функций координат, отвечающих различным значениям а; об этих функциях мы будем говорить как о спиновых компонентах волновой функции. При этом интеграл

определяет вероятность частице иметь определенное значение а. Вероятность же частице находиться в элементе Объема имея произвольное значение а, есть

Квантовомеханический оператор спина при применении его к волновой функции действует именно на спиновую переменную . Другими словами, он каким-то образом преобразует друг через друга компоненты волновой функции. Вид этого оператора будет установлен ниже. Но, уже исходя из самых общих соображений, легко убедиться в том, что операторы удовлетворяют таким же условиям коммутации, как и операторы орбитального момента.

Оператор момента в основном совпадает с оператором бесконечно малого поворота. При выводе в § 26 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спинового момента такой вывод теряет смысл, поскольку оператор спина действует на спиновую переменную, а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси х и оси у, а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обеих этих операций эквивалентна бесконечно малому повороту вокруг оси (на угол, равный произведению углов поворота вокруг осей х и у). Мы не станем производить здесь этих простых вычислений, в результате которых вновь получаются обычные соотношения коммутации между операторами компонент момента импульса, которые, следовательно, должны иметь место и для операторов спина:

со всеми вытекающими из них физическими следствиями.

Соотношения коммутации (54,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведенный в § 27 (формулы (27,7)-(27,9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо L в этих формулах подразумевать s. Из формул (27,7) следует, что собственные значения проекции спина образуют последовательность чисел, отличающихся на единицу. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для проекции орбитального момента (приведенный в начале § 27 вывод здесь неприменим, поскольку он основан на выражении (26,14) для оператора , специфическом для орбитального момента).

Далее, последовательность собственных значений ограничена сверху и снизу значениями, одинаковыми по абсолютной величине и противоположными по знаку, которые мы обозначим посредством Разность между наибольшим и наименьшим значениями должна быть целым числом или нулем. Следовательно, число s может иметь значения 0, 1/2, 1, 3/2, ...

Таким образом, собственные значения квадрата спина равны

где s может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном s компонента спина может пробегать значения - всего значений. Соответственно этому, и волновая функция частицы со спином s имеет компонент

Опыт показывает, что большинство элементарных частиц - электроны, позитроны, протоны, нейтроны, мезоны и все гипероны - обладают спином 1/2. Кроме того, существуют элементарные частицы - -мезоны и -мезоны, - обладающие спином 0.

Полный момент импульса частицы складывается из ее орбитального момента 1 и спина s. Их операторы, действуя на функции совершенно различных переменных, разумеется, коммутативны друг с другом.

Собственные значения полного момента

определяются тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 31).

Именно, при заданных значениях полный момент может иметь значения . Так, у электрона (спин 1/2) с отличным от нуля орбитальным моментом l полный момент может быть равен ; при момент имеет, конечно, лишь одно значение

Оператор полного момента J системы частиц равен сумме операторов моментов каждой из них, так что его значения опредег ляются снова правилами векторной модели. Момент J можно представить в виде

где S можно назвать полным спином, а L - полным орбитальным моментом системы.

Отметим, что если полный спин системы - полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если система состоит из четного числа одинаковых частиц, то ее полный спин во всяком случае целый, а потому будет целым и полный момент.

Операторы полного момента частицы j (или системы частиц J) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента импульса. Следующие из правил коммутации формулы (27,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Остаются справедливыми (с соответствующим изменением обозначений) также и формулы (29,7)-(29,10) для матричных элементов произвольных векторных величин.

Учитывая также, что найдем

© Мученик Науки.

Приняты следующие обозначения:
- Векторы – жирными буквами чуть большего размера чем остальной текст. W , g , A .
- пояснения к обозначениям в таблицах – курсивом.
- целочисленные индексы – жирным шрифтом обычного размера.
m , i , j .
- не векторные переменные величины и формулы – курсивом чуть более крупного размера:
q , r , k , sin , cos .

Момент импульса. Школьный уровень.

Момент импульса характеризует количество вращательного движения. Это величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Момент импульса вращающейся вокруг оси Z гантельки из двух шариков массы m , каждый из которых расположен на расстоянии l от оси вращения, с линейной скоростью шариков V , равен:

M= 2·m·l·V ;

Ну понятно, в формуле стоит 2 потому что у гантельки два шарика.

Момент импульса. Университетский уровень.

Момент импульса L материальной точки (кинетический момент, угловой момент, орбитальный момент, момент количества движения ) относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

L = [ r х p ]

где r - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, p - импульс частицы.
Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

L = Σ i [ r i х p i ]

где r i , p i - радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.
В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределённой сиситемы
это может быть записано как

L = r xd p

где d p - импульс бесконечно малого точечного элемента системы.
Из определения момента импульса следует его аддитивность как для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:

L Σ = Σ i L i


Опыт Штерна и Герлаха.

В 1922 году физики проделали эксперимент, в котором оказалось, что атомы серебра имеют свой момент импульса. Причём проекция этого момента импульса на ось Z (см.рис) оказалась равной либо некоторой положительной величине, либо некоторой отрицательной величине, но не нулю. Это невозможно объяснить орбитальным моментом импульса электронов в атоме серебра. Потому что орбитальные моменты обязательно давали бы, в том числе, и нулевую проекцию. А здесь строго плюс и минус, и в нуле ничего. Впоследствии, в 1927 г. это было интерпретировано как доказательство существования спина у электронов.
В опыте Штерна и Герлаха (1922) путем испарения в вакуумной печи атомов серебра или другого металла с помощью тонких щелей формируется узкий атомный пучок (рис).

Этот пучок пропускается через неоднородное магнитное поле с существенным градиентом магнитной индукции. Индукция магнитного поля B в опыте велика и направлена вдоль оси Z . На пролетающие в зазоре магнита атомы вдоль направления магнитного поля действует сила F z , обусловленная градиентом индукции неоднородного магнитного поля и зависящая от величины проекции магнитного момента атома на направление поля. Эта сила отклоняет движущийся атом в направлении оси Z , причем за время пролета магнита движущийся атом отклоняется тем больше, чем больше величина силы. При этом одни атомы отклоняются вверх, а другие вниз.
С позиций классической физики, пролетевшие через магнит атомы серебра должны были образовать сплошную широкую зеркальную полосу на стеклянной пластинке.
Если же, как предсказывает квантовая теория, имеет место пространственное квантование, и проекция магнитного момента
p Z M атома принимает только определенные дискретные значения, то под действием силы F Z атомный пучок должен расщепиться на дискретное число пучков, которые, оседая на стеклянной пластинке, дают серию узких дискретных зеркальных полосок из напыленных атомов. Именно этот результат наблюдался в эксперименте. С одним лишь но: не было полоски по самому центру пластинки.
Но это ещё не было открытием спина у электронов. Ну дискретный ряд моментов импульса у атомов серебра, ну и что? Однако учёные продолжали думать, почему нет полоски по центру пластины?
Пучок невозбужденных атомов серебра расщепился на два пучка, которые напылили на стеклянной пластинке две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз. Измерение этих сдвигов позволило определить магнитный момент невозбужденного атома серебра. Его проекция на направление магнитного поля оказалась равной
+ μ Б или -μ Б . То есть магнитный момент невозбуждённого атома серебра оказался строго не равным нулю. Это не имело объяснения.
Однако, из химии было известно, что валентность серебра равна +1 . То есть на внешней электронной оболочке находится один активный электрон. А общее число электронов в атоме нечётно.

Гипотеза о спине электрона

Это противоречие теории и опыта стало не единственным, обнаруженным в различных экспериментах. Такое же отличие наблюдалось при изучении тонкой структуры оптических спектров щелочных металлов (они, кстати, тоже одновалентны). В опытах с ферромагнетиками было обнаружено аномальное значение гиромагнитного отношения, отличающегося от ожидаемого значения в два раза.
В 1924 г. Вольфганг Паули ввёл двухкомпонентную внутреннюю степень свободы для описания эмиссионных спектров валентного электрона в щелочных металлах.
В который раз обращает на себя внимание, как западные учёные с лёгкостью придумывают новые частицы, феномены, реальности для объяснения старых. Точно так же введён и бозон Хиггса для объяснения массы. Далее будет бозон Шмиггса для объяснения бозона Хиггса.
В 1927 году Паули модифицирует недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном двумерном спиновом пространстве.
Это позволило ему сформулировать принцип Паули, согласно которому в некоторой системе взаимодействующих частиц у каждого электрона должен быть свой собственный неповторяющийся набор квантовых чисел (все электроны в каждый момент времени находятся в разных состояниях). Поскольку физическая интерпретация спина у электрона была неясна с самого начала (и это имеет место до сих пор), в 1925 г. Ральф Крониг (ассистент известного физика Альфреда Ланде) высказал предположение о спине как результате собственного вращения электрона.
Все эти трудности квантовой теории были преодолены, когда осенью 1925 г. Дж. Уленбек и С. Гаудсмит постулировали, что электрон является носителем "собственных" механического и магнитного моментов, не связанных с движением электрона в пространстве. То есть обладает спином S = ½ ћ в единицах постоянной Дирака ћ , и спиновым магнитным моментом, равным магнетону Бора. Это предположение и было принято научным сообществом, поскольку удовлетворительно объясняло известные факты.
Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом
spin , которое переводится как "кружение", "верчение".
В 1928 г. П.Дирак ещё сильнее обобщил квантовую теорию на случай релятивистского движения частицы и вводит уже четырёхкомпонентную величину — биспинор.
В основе релятивистской квантовой механики лежит уравнение Дирака, записанное первоначально для релятивистского электрона. Это уравнение значительно сложнее уравнения Шредингера по своей структуре и математическому аппарату, используемому при его записи. Мы не станем обсуждать это уравнение. Скажем лишь, что из уравнения Дирака четвертое, спиновое квантовое число получается так же «естественно», как и три квантовых числа при решении уравнения Шредингера.
В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина. Кроме этого, у спина и орбитального момента частиц возникает различная связь с соответствующими магнитными дипольными моментами, сопровождающими любое вращение заряженных частиц. В частности, в формуле для спина и его магнитного момента гиромагнитное отношение не равно 1 .
Концепция спина у электрона привлекается для объяснения многих явлений, таких как расположение атомов в периодической системе химических элементов, тонкая структура атомных спектров, эффект Зеемана, ферромагнетизм, а также для обоснования принципа Паули. Недавно возникшая область исследований, называемая «спинтроника», занимается манипуляциями спинов зарядов в полупроводниковых устройствах. В ядерном магнитном резонансе используется взаимодействие радиоволн со спинами ядер, позволяющее осуществлять спектроскопию химических элементов и получать изображения внутренних органов в медицинской практике. Для фотонов как частиц света спин связывается с поляризацией света.

Механическая модель спина.

В 20-30-х годах прошлого столетия было проведено множество экспериментов, которые доказали наличие спина у элементарных частиц. Эксперименты доказали реальность спина как именно момента вращения. Но откуда берётся это вращение в электроне или протоне?

Предположим простейшее, что электрон - это малюсенький твердый шарик. Предполагаем, что этот шарик имеет некую среднюю плотность и некие физические параметры, близкие к известным экспериментальным и теоретическим величинам реального электрона. Имеем экспериментальные величины:
Масса покоя электрона: m e
Спин электрона S e = ½ ћ
В качестве линейного размера объекта берем его комптоновскую длину волны, подтвержденную как экспериментально, так и теоретически. Комптоновскую длина волны электрона:

Очевидно, это диаметр объекта. Радиус в 2 раза меньше:

Имеем теоретические величины, получаемые из механики и квантовой физики.
1) Вычисляем момент инерции объекта I e . Поскольку мы не знаем достоверно его формы, то вводим поправочный коэффициенты k e , который, в зависимости от формы, теоретически может иметь величину от почти 0,0 (иголка, вращающаяся вокруг длинной оси) до 1,0 (при точной форме длинной гантельки как на рисунке в начале статьи или широкого, но тонкого бублика). К примеру, значение 0,4 достигается при точной форме шара. Итак:


2) Из формулы S = I · ω , находим угловую скорость вращения объектов:

3) Этой угловой скорости соответствует линейная скорость V "поверхности" электрона:


Или

V = 0,4 c ;

Если брать как на рисунке в начале статьи электрон имеющим вид гантельки, то получается

V = 0,16 c ;

4) Совершенно аналогично проделываем выкладки для протона или нейтрона. Линейная скорость "поверхности" протона или нейтрона для шариковой модели получается точно такая же, 0,4 c :

5) Делаем выводы. Результат зависит от формы объекта (коэффициент k при вычислении момента инерции) и от коэффициентов в формулах для спинов электрона или протона (½). Но, как ни крути, а в среднем получается около, близко к скорости света . Как у электрона, так и у протона. Не больше скорости света! Результат, который трудно назвать случайным. Мы делали "бессмысленные" выкладки, но получили абсолютно осмысленный, выделенный результат!

Все не так, ребята! - говорил Владимир Высоцкий. Это не сигнал, это дилемма: либо - либо! Либо что-то пополам, либо что-то вдребезги. Эйнштейн и Шрёдингер лишают смысла эти рассуждения, так как по Эйнштейну при скоростях порядка скорости света масса растет до бесконечности, а по Шрёдингеру они не имеют ни формы, ни размеров. Однако все на свете "относительно" и неизвестно, что чего и кто кого лишает смысла. Теория Гукуума имеет ответ, по которому волновые вихри – электроны, в Гукууме как раз и крутятся со световой линейной скоростью! Собственно масса - она всегда движется и всегда исключительно со световой скоростью. Электрон и протон, каждый элемент в них, каждая точка движется по своей замкнутой траектории и не иначе как со скоростью света. Именно в этом и состоит настоящий и простой смысл формулы:

Это практически удвоенная формула кинетической энергии волны. Почему удвоенная? – Потому что в упругой волне половина энергии кинетическая, а вторая половина энергии – скрытая, потенциальная, в виде деформации среды, в которой происходит распространение волны.

Фразы, объясняющие спин электрона.

Какова же таки физическая природа наличия у электрона спина, если она не объяснима с механической точки зрения? Ответа на этот вопрос нет не только к классической физике, но и рамках нерелятивистской квантовой механики, в основе которой лежит уравнение Шредингера. Спин вносится в виде некой дополнительной гипотезы, необходимой для согласования эксперимента и теории.

Рассуждения о форме или внутреннем устройстве элементарных частиц, например электрона, в современной физике легко относятся к "не имеющим смысла". Раз их глазами не видно, значит нечего и спрашивать! Микробы появились на свет с изобретением микроскопа (Михаил Генин). Попытки таких рассуждений всегда заканчиваются словами, что,

Фраза №1.
Законы и понятия классической физики перестают действовать в микромире.
Если само местонахождение объекта неизвестно, это Ψ -функция, то что говорить об его устройстве? Размазан - и всё тут. Нет никакого устройства.
То же самое говорится и о физическом смысле момента импульса - спина электрона (протона). Вращение как бы есть, спин тоже есть, но

Фраза №2.
Спрашивать как выглядит это вращение - "не имеет смысла".
Есть аналогии и в макро - мире. Допустим, мы хотим спросить олигарха: а как вы заработали свои миллиарды? Или, где вы храните наворованное? - А вам отвечают: ваш вопрос не имеет смысла! Тайна за семью печатями.

Фраза №3.
Спин электрона не имеет классического аналога.
То есть спин как бы имеет какой-то аналог, но вот классического аналога он не имеет. Он как бы характеризует внутреннее свойство квантовой частицы, связанное с наличием у нее дополнительной степени свободы. Количественная характеристика этой степени свободы - спин S = ½ ћ является для электрона такой же величиной как, например, его масса m 0 и заряд - e . Однако спин – это реально вращение, это момент вращения и проявляется в экспериментах.

Фраза №4.
Спин вносится в виде дополнительной гипотезы, не вытекающей из основных положений теории, но необходимой для согласования эксперимента и теории .

Фраза №5.
Спин является некоторым внутренним свойством, наподобие массы или заряда, требующим особого, пока ещё не известного обоснования
.
Другими словами. Спин (от англ. spin — вертеться, вращение) — собственный момент импульса элементарных частиц, имеющий «квантовую природу» и не связанный с движением частицы как целого. В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с любым движением в пространстве. Спин — это якобы внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках механики.

Фраза №6.
Однако, несмотря на всю свою загадочность происхождения, спин является объективно существующей и вполне измеряемой физической величиной.

В то же время, оказывается, что спин (и его проекции на какую-либо ось) могут принимать только целые или полуцелые значения в единицах постоянной Дирака
ħ = h /2π . Где h – постоянная Планка. Для тех частиц, которые имеют полуцелые спины, проекция спина не бывает равной нулю.

Фраза №7.
Существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в «особом изоспиновом пространстве».
Как говорится, уж молоть так молоть!
В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет» — более сложный аналог спина.
То есть, количество загадок нарастало, но все они решались гипотезой, что существует некое пространство состояний, не связанных с перемещением частицы в обычном пространстве.

Фраза №8.
Итак, в самых общих словах можно сказать, что собственные механический и магнитный моменты у электрона появляются как следствие релятивистских эффектов в квантовой теории.

Фраза №9.
Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого.

Фраза №10.
Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Фраза 11.
Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина ŝ , алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента
l . Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина.
Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения.

Фраза 12.
В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина.
Как говорится, если часто что-то повторять, то этому начинаешь верить. Вот сейчас далдонят, демократия, демократия, власть закона. И люди привыкают, начинают верить.
Также неявно используется перевод с английского слова «спин» – от англ. вращаться. Дескать англичане–то смысл спина знают, просто переводчики никак не могут толково перевести.

Структура электрона.

Как показывает попытка погуглить размер электрона, это тоже для всех физиков такая же загадка как и природа спина электрона. Попробуйте, и вы не найдёте нигде, ни в Википедии, ни в Физической энциклопедии. Выдвигаются самые разные цифры. От долей процента размера протона, до тысяч размеров протона. А без знания размера электрона, а ещё лучше структуры электрона, невозможно понять происхождение его спина.
А вот теперь подойдём к объяснению спина с позиции структурного электрона. С позиции теории упругой вселенной. Вот так выглядит электрон.

Здесь изображены не твёрденькие колечки, не бублики, а волновые кольца. То есть бегающие по кругу волны, такое решение даёт математика. Вертящиеся по кругу со скоростью света , причём (!) соседние кольца движутся в противоположных направлениях. Собственно, этот рисунок есть иллюстрация формулы распределения энергии внутри электрона:

Желающие могут легко проверить эту формулу.
Здесь q – радиальная координата.
Именно это вращение составляющих колец создаёт суммарный ненулевой внутренний момент импульса - спин электрона. В этом - разгадка появления спина, который до сих пор остаётся загадкой в общепринятой науке. Правда, эту загадку на деле никто и не стремится разгадать, но это отдельный вопрос.
Именно это вращение соседних колец в противоположные стороны, во-первых даёт сходимость интеграла по моменту вращения, а во-вторых, создаёт несоответствие между магнитным моментом и спином.
На этом (приблизительном) рисунке показаны только основные, ближайшие кольца, всего их бесконечно много. Весь объект является единым целым, очень устойчивым, никакая часть его не может быть удалена. И это целое - есть элементарная частица, электрон. Это не выдумка, не фантазия, не подгонка. Это, еще раз, строгая математика!
Пусть не пугаются от неожиданности те, кто считает, что в атоме водорода (простейший случай) электрон вращается вокруг ядра. Нет, он не вращается как целое вокруг ядра. Просто электрон – это облако, реальное волновое облако, и таковым он является даже когда одиночный и свободный. Просто ядро атома водорода находится внутри электрона.

Объяснение феномена спина.

А дальше остаётся только вычислить момент импульса данной сложной структуры из волновых бубликов.
Момент импульса электрона определяется следующим образом.
- Есть распределения энергии в электроне. При переходе из слоя в слой направление движения энергии изменяется на противоположное.
Таким образом, правдоподобная общая формула для проекции момента импульса всех частиц
M z , имеет вид:

R - ранее определённая величина.

Под знаком интеграла четыре элемента, которые для наглядности выделены в квадратные скобки. Первая квадратная скобка содержит в себе элементы плотности массы электрона (отличие от энергии - c 2 в знаменателе), с учетом "наслоения" бегущей волны саму на себя (r 2 в знаменателе) и также с учетом знака, с которым эта масса войдет в формулу момента импульса (функция sign ). То есть, в зависимости от направления вращения данного элемента. Вторая квадратная скобка - расстояние от оси вращения - оси Z . Третья квадратная скобка - скорость движения элемента массы, скорость света. Четвертая - элемент объема. То есть это момент импульса в классическом его понимании.

Данное уравнение для момента импульса не объявляется точным количественно, хотя и это не исключено. Но корреляционную картину распределения момента импульса оно дает. А как станет видно из окончательных результатов, такое определение момента импульса дает и хорошее количественное значение момента импульса (с точностью до знака).
Полный момент импульса электрона после численного интегрирования:

Где L 1 и L 2 - коэффициенты Ламэ Гукуума (характеристики упругости). Они приводятся на указанном сайте.
Как показывает анализ, данная формула прекрасно вписывается в известные физические результаты. Но анализ её слишком объёмен чтобы выкладывать здесь.

Сравнение теоретических и экспериментальных размеров частиц.

Данная процедура делается вот для чего. В найденные теоретические формулы для связи размеров частиц, их масс и спинов, подставляются их известные экспериментальные спины и массы. После чего вычисляются (полу)теоретические размеры частиц и сравниваются с известными экспериментальными. Так оказалось удобнее.
Вводятся обозначения: локи (0,0), (1,0) и (1,1) – это, соответственно, электрон, нейтрон и протон.

Теоретические величины.





Какое отношение имеют величины, λ 0,0 , λ 1,0 , λ 1,1 к реальным размерам частиц? Если посмотреть на теоретические распределения плотности частиц (или на рисунок электрона), то видно, что они распределены волнообразно, с убыванием. Эффективный радиус каждой частицы, до радиуса, охватывающего основную часть массы (это 3-4 волны плотности) примерно равен:

R 0,0 ≈ 2,5 π единиц q ;

R 1,0 ≈ 2 π единиц q ;

R 1,1 ≈ 2 π единиц q .

Где h - обычная, не перечеркнутая постоянная Планка.
Имеющий глаза да увидит: эффективные теоретические радиусы локов (0,0), (1,0) и (1,1) равны почти в точности половине комптоновской длине волны электрона, нейтрона и протона. То есть, комптоновская длина волны частицы выступает как их диаметр.

Комптоновская длина волны есть линейный размер, а масса частицы характеризует объём частицы, то есть линейный размер в кубе. Как видно, в формуле масса стоит в знаменателе. По этой причине относиться к этой формуле слишком доверительно не стоит. Было бы, на наш взгляд, правильнее за размер частицы брать величину, пропорциональную следующей:

Где K – некоторый коэффициент пропорциональности.
Изначально протон в 12 раз (по размеру) меньше электрона и легко влезает в центральную дырку электрона. А затем при взаимодействии электрона с протоном электрон меняет своё состояние (в поле протона) и раздувается ещё в 40 раз, что не удивительно.

Так устроен атом водорода (жёлтенький протон внутри серого электрона).
Как известно из официальной физики, комптоновский размер электрона (R компт =1,21▪10 -10 см .) примерно в 40 раз меньше чем размер атома водорода (первый боровский радиус равен: R бор =0,53▪10 -8 см .). Это кажущееся противоречие с нашей теорией, которое нуждается в устранении и уточнении. Либо при образовании водорода электрон (как волновое облако) меняет свою форму и растягивается. При этом он обволакивает протон. Либо надо пересмотреть, что же такое боровский радиус и каков его физический смысл. Физику в части размеров частиц надо капитально пересмотреть.

Спин (spin – вращение) это наиболее простая вещь на которой можно продемонстрировать отличия квантовой механики от классической. Из определения кажется, что связан он с вращением, но не надо представлять себе электрон или протон вращающимися шариками. Как и в случае многих других устоявшихся научных терминов было доказано что это не так, но терминология уже устоялась. Электрон – точечная частица (нулевого радиуса). А спин отвечает за магнитные свойства. Если электрически заряженная частица движется по кривой траектории (в том числе вращается), то образуется магнитное поле. Электромагниты так работают – электроны движутся по проводам катушки. Но спин отличается от классического магнита. Вот неплохая анимация:

Если магнитики пропускать через неоднородное магнитное поле (обратите внимание на различную форму северного и южного полюсов магнита, задающего поле), то в зависимости от ориентации магнитика (его вектора магнитного момента) они будут притягиваться (отталкиваться) от полюса с большей концентрацией силовых линий магнитного поля (заостренный полюс магнита). В случае перпендикулярной ориентации магнитик вообще никуда не отклонится и попадет в центр экрана.

Пропуская электроны мы будем наблюдать только отклонение вверх или вниз на одно и то же расстояние . Это пример квантования (дискретности). Спин электрона может принимать только одно из двух значений относительно заданной оси ориентации магнита – «вверх» или «вниз». Поскольку электрон мысленно представить себе нельзя (у него нет ни цвета, ни формы, ни даже траектории движения), как и во всех подобных анимациях цветные шарики не отражают реальность, но суть думаю понятна.

Если электрон отклонился вверх, то говорят, что его спин направлен «вверх» (+1/2 условно обозначают) относительно оси магнита. Если вниз, то -1/2. И казалось бы спин можно описать обычным вектором, указывающим направление. У тех электронов, где он был направлен вверх, они и отклонятся вверх в магнитном поле, а у которых вниз – те соответственно вниз. Но не все так просто! Электрон отклоняется вверх (вниз) на одно и тоже расстояние относительно любой ориентации магнита . На видео выше можно было бы менять не ориентацию пропускаемых магнитиков, а поворачивать сам магнит, создающий магнитное поле. Эффект в случае обычных магнитиков был бы тот же. Что будет в случае электронов – в отличие от магнитиков они всегда будут отклонятся на одно и тоже расстояние вверх или вниз.

Если, например, пропустить вертикально расположенный классический магнитик через два перпендикулярно ориентированных друг относительно друга магнита, то отклоняясь вверх в первом, он не отклонится во втором вообще никак – его вектор магнитного момента будет перпендикулярен линиям магнитного поля. На видео выше это тот случай когда магнитик попадает в центр экрана. Электрон же обязан куда-нибудь отклонится.

Если мы будем пропускать через второй магнит только электроны со спином вверх, как на рисунке, то окажется что часть из них оказались еще и со спином вверх (вниз) относительно другой перпендикулярной оси. Вправо и влево фактически, но спин измеряют относительно выбранной оси, поэтому «вверх» и «вниз» общепринятая терминология вместе с указанием оси. Вектор не может быть направлен сразу вверх и вправо. Делаем вывод, что спин – это не классический вектор, прикрепленный к электрону наподобие вектора магнитного момента магнитика. Более того, зная, что спин электрона направлен вверх после прохождения первого магнита (отклоняющиеся вниз блокируем), невозможно предсказать куда он отклонится во втором случае: вправо или влево.

Ну и можно еще чуть-чуть усложнить эксперимент – блокировать электроны, отклонившиеся влево и пропустить через третий магнит, ориентированный как и первый.

И мы увидим, что электроны будут отклонятся как вверх, так и вниз. То есть электроны, попадающие во второй магнит все имели спин вверх относительно ориентации первого магнита, а потом часть из них стала вдруг со спином вниз относительно той же самой оси.

Странно! Если через такую конструкцию пропускать классические магнитики, повернутые под одним и тем же произвольно выбранным углом, то они всегда будут попадать в конце в одну и ту же точку экрана. Это называется детерминизмом. Повторив эксперимент при полном соответствии начальных условий мы должны получить тот же результат. В этом заключается основа предсказательной силы науки. Даже наша интуиция основана на повторяемости результатов в схожих ситуациях. В квантовой механике предсказать куда отклонится конкретно взятый электрон в общем случае невозможно. Хотя в некоторых ситуациях есть исключения: если поставить два магнита с одинаковой ориентацией, то если электрон отклонится вверх в первом, то он точно отклонится вверх и во втором. А если магниты повернуты на 180 градусов друг относительно друга и в первом электрон отклонился, например, вниз, то во втором он точно отклонится вверх. И наоборот. Сам по себе спин не меняется. Это уже хорошо)

Какие из всего этого можно сделать общие выводы.

  1. Многие величины, которые могли принимать любые значения в классической механике, могут иметь только некоторые дискретные (квантованные) значения в квантовой теории. Помимо спина энергия электронов в атомах является ярким примером.
  2. Объектам микромира нельзя приписать никакие классические характеристики до момента измерения. Нельзя полагать, что спин имел какое-то определенное направление до того как мы посмотрели куда отклонился электрон. Это общее положение и оно касается всех измеряемых величин: координат, скорости и т.п. Квантовая механика . Она утверждает, что объективный, не зависимый ни от кого классический мир, просто не существует. наиболее наглядно демонстрирует данный факт. (наблюдателя) в квантовой механике чрезвычайно важна.
  3. Процесс измерения затирает (делает неактуальной) информацию о предыдущем измерении. Если спин оказался направлен вверх относительно оси y , то неважно, что раньше он был направлен вверх относительно оси x , он может оказаться и спином вниз относительно той же самой оси x впоследствии. Опять же данное обстоятельство касается не только спина. Например, если электрон обнаружен в точке с координатами (x , y , z ) это в общем случае не значит, что он был в этой точке до этого. Данный факт известен под названием «коллапс волновой функции».
  4. Есть такие физические величины значения которых невозможно знать одновременно. Например, нельзя измерить спин относительно оси x и одновременно относительно перпендикулярной ей оси y . Если мы попытаемся сделать это одновременно, то магнитные поля двух повернутых магнитов наложатся и мы вместо двух разных осей получим одну новую и измерим спин относительно нее. Последовательно измерять тоже не удастся вследствие предыдуще изложенного вывода №3. Это тоже общий принцип. Например, координату и импульс (скорость) тоже нельзя измерить одновременно с большой точностью — знаменитый принцип неопределенности Гейзенберга.
  5. Предсказать результат единичного измерения невозможно в принципе. Квантовая механика позволяет лишь вычислять вероятности того или иного события. Например, можно посчитать, что в опыте на первой картинке при ориентации магнитов 90° друг к другу 50% отклонится влево и 50% вправо. Предсказать куда отклонится конкретно взятый электрон нельзя. Данное общее обстоятельство известно как «правило Борна» и является центральным в .
  6. Детерминированные классические законы выводятся из вероятностных квантовомеханических за счет того, что в макроскопическом объекте очень много частиц и вероятностные флуктуации усредняются. Например, если в опыте на первой картинке пропускать вертикально ориентированный классический магнитик, то 50% составляющих его частиц будут «тянуть» его вправо, а 50% влево. В итоге он никуда не отклонится. При других ориентациях углов магнита меняется процентное соотношение, что в итоге и влияет на отклоняемое расстояние. Квантовая механика позволяет рассчитать конкретные вероятности и как следствие из нее можно вывести формулу для отклоняемого расстояния в зависимости от угла ориентации магнитика, получаемую обычно из классической электродинамики. Так классическая физика выводится и является следствием квантовой.

Да, описанные действия с магнитиками называются эксперимент Штерна-Герлаха.

Существует видеоверсия данного поста в и элементарного введения в квантовую механику.

Спин - это момент вращения элементарной частицы .

Иногда даже в очень серьезных книгах по физике можно встретить ошибочное утверждение о том, что спин никак не связан с вращением, что, якобы, элементарная частица не вращается. Иногда встречается даже такое утверждение, что спин, это, якобы, такая особая квантовая характеристика элементарных частиц, типа заряда, которая не встречается в классической механике.

Такое заблуждение возникло вследствие того, что, при попытке представить элементарную частицу в виде вращающегося твердого шарика однородной плотности, получаются нелепые результаты относительно скорости такого вращения и магнитного момента, связанным с таким вращением. Но, на самом деле, эта нелепость говорит лишь о том, что элементарную частицу нельзя представить в виде твердого шарика однородной плотности, а не о том, что спин будто бы никак не связан с вращением.

  • Если спин не связан с вращением, то почему выполняется общий закон сохранения момента вращения, куда в виде слагаемого входит и спиновый момент? Получается, что с помощью спинового момента мы можем раскрутить какую-нибудь элементарную частицу так, чтобы она двигалась по окружности. Это получается, что вращение возникло, как бы, из ничего.
  • Если у всех элементарных частиц в теле все спины будут направлены в одну сторону и суммируются друг с другом, то что тогда мы получим на макроуровне?
  • Наконец, чем вращение отличается от невращения? Какая характеристика тела, является универсальным признаком вращения этого тела? Как отличить вращение от невращения? Если задуматься над этими вопросами, то Вы придете к выводу, что единственным критерием вращения тела является наличие у него момента вращения. Очень нелепо выглядит такая ситуация, когда Вам говорят, что, дескать, да, момент вращения как бы есть, а самого вращения как бы нет.

На самом деле, очень сильно сбивает с толку то, что в классической физике мы не наблюдаем аналога спина. Если бы мы могли бы обнаружить аналог спина в классической механике, то его квантовые свойства не казались бы нам слишком экзотическими. Поэтому для начала попробуем поискать аналог спина в классической механике.

Аналог спина в классической механике

Как известно, при доказательстве теоремы Эммы Нётер в той её части, которая посвящена изотропности пространства, мы получаем два слагаемых связанных с моментом вращения. Одно из этих слагаемых интерпретируется в качестве обычного вращения, а другое в качестве спина. Но теоремы Э.Нётер безотносительна того, с какой физикой мы имеем дело, с классической или с квантовой. Теорема Нётер имеет отношение к глобальным свойствам пространства и времени. Это универсальная теорема.

А раз так, то значит и спиновый вращательный момент существует в классической механике, хотя бы теоретически. Действительно, можно чисто теоретически построить модель спина в классической механике. Реализуется ли эта модель спина на практике в какой-нибудь макросистеме, это уже другой вопрос.

Давайте посмотрим на обычное классическое вращение. Сразу бросается в глаза то, что бывают вращения связанные с переносом центра массы и без переноса центра массы. Например, когда Земля вращается вокруг Солнца, то происходит перенос массы Земли, так как ось этого вращения не проходит через центр массы Земли. В то время, как при вращении Земли вокруг своей оси, центр массы Земли никуда не перемещается.

Тем не менее, при вращении Земли вокруг своей оси масса Земли всё равно двигается. Но очень интересно. Если выделить какой-нибудь объем пространства внутри Земли, то масса внутри этого объема не меняется с течением времени. Потому что, сколько массы уходит из этого объема в единицу времени с одной стороны, столько же и приходит массы с другой стороны. Получается, что в случае вращения Земли вокруг своей оси мы имеем дело с потоком массы.

Другой пример потока массы в классической механике, это круговой поток воды (воронка в ванной, перемешивание сахара в стакане с чаем) и круговые потоки воздуха (смерч, тайфун, циклон и т.п.). Сколько воздуха или воды уходит из выделенного объема в единицу времени, столько же туда и приходит. Поэтому масса этого выделенного объема не меняется во времени.

А теперь давайте сообразим, как должно выглядеть вращательное движение, в котором нет даже потока массы, но присутствует момент вращения. Представим себе неподвижный стакан воды. Пусть каждая молекула воды в этом стакане вращается по часовой стрелке вокруг вертикальной оси, которая проходит через центр массы молекулы. Вот такое упорядоченное вращение всех молекул воды.

Понятно, что у каждой молекулы воды в стакане будет ненулевой момент вращения. При этом моменты вращения всех молекул направлены в одну и ту же сторону. Значит, эти моменты вращения суммируются друг с другом. И эта сумма как раз и будет макроскопическим моментом вращения воды в стакане. (В реальной ситуации все моменты вращения молекул воды направлены в разные стороны и их суммирование дает нулевой общий момент вращения всей воды в стакане.)

Таким образом, мы получаем, что центр массы воды в стакане не вращается вокруг чего-то, и нет кругового потока воды в стакане. А момент вращения имеется. Это и есть аналог спина в классической механике.

Правда, это пока еще не совсем "честный" спин. У нас есть локальные потоки массы, связанные с вращением каждой отдельно взятой молекулы воды. Но это преодолевается предельным переходом, при котором число молекул воды в стакане устремляем к бесконечности, а массу каждой молекулы воды устремляем к нулю так, чтобы плотность воды оставалась постоянной при таком предельном переходе. Понятно, что при таком предельном переходе угловая скорость вращения молекул остается постоянной, и общий момент вращения воды тоже остается постоянным. В пределе получаем, что этот момент вращения воды в стакане имеет чисто спиновую природу.

Квантование момента вращения

В квантовой механике характеристики тела, которые могут передаваться от одного тела к другому, могут квантоваться. Основное положение квантовой механики утверждает, что эти характеристики могут передаваться от одного тела к другому не в любых количествах, а только кратно некоторому минимальному количеству. Это минимальное количество называется квантом. Квант в переводе с латыни как раз и означает количество, порция.

Поэтому и наука, которая изучает все следствия такой передачи характеристик, называется квантовой физикой. (Не путать с квантовой механикой! Квантовая механика, это математическая модель квантовой физики.)

Создатель квантовой физики Макс Планк полагал, что только такая характеристика, как энергия, передается от тела к телу пропорционально целому числу квантов. Это помогло Планку объяснить одну из загадок физики конца 19-го века, а именно, почему все тела не отдают всю свою энергию полям. Дело в том, что у полей бесконечное число степеней свободы, а у тел конечное число степеней свободы. В соответствии с законом о равнораспределении энергии по всем степеням свободы, все тела должны были бы мгновенно отдать всю свою энергию полям, чего мы не наблюдаем.

Впоследствии Нильс Бор разгадал вторую величайшую загадку физики конца 19-го века, а именно, почему все атомы одинаковы. Например, почему не бывает больших атомов водорода и маленьких атомов водорода, почему радиусы всех атомов водорода одинаковы. Оказалось, что эта проблема решается, если считать, что не только энергия квантуется, но и момент вращения тоже квантуется. И, соответственно, вращение может передаваться от одного тела к другому не в любых количествах, а только пропорционально минимальному кванту вращения.

Квантование момента вращения сильно отличается от квантования энергии. Энергия, это скалярная величина. Поэтому квант энергии всегда положителен и у тела может быть только положительная энергия, то есть положительное число квантов энергии. Кванты вращения вокруг определенной оси бывают двух видов. Квант вращения по часовой стрелке и квант вращения против часовой стрелки. Соответственно, если Вы выбираете другую ось вращения, то там также есть два кванта вращения, по часовой стрелке и против часовой стрелки.

Аналогичная ситуация и при квантовании импульса. Вдоль определенной оси телу можно передать положительный квант импульса или отрицательный квант импульса. При квантовании заряда тоже получается два кванта, положительный и отрицательный, но это скалярные величины, они не имеют направления.

Спин элементарных частиц

В квантовой механике принято собственные моменты вращения элементарных частиц называть спином. Момент вращения элементарных частиц очень удобно измерять в минимальных квантах вращения. Так и говорят, что, например, спин фотона вдоль оси такой-то равен (+1). Это означает, что у этого фотона момент вращения равен одному кванту вращения по часовой стрелке относительно выбранной оси. Или говорят, что спин электрона вдоль оси такой-то равен (-1/2). Это означает, что у этого электрона момент вращения равен половине кванта вращения против часовой стрелки относительно выбранной оси.

Иногда некоторых людей смущает, почему у фермионов (электроны, протоны, нейтроны и т.п.) половинные кванты вращения в отличие от бозонов (фотоны и т.п.). На самом деле квантовая механика ничего не говорит о том, какое количество вращения может иметь тело. Она говорит только о том, в каком количестве это вращение может ПЕРЕДАВАТЬСЯ от одного тела к другому.

Ситуация с половинами квантов встречается не только при квантовании вращения. Например, если решать уравнение Шредингера для линейного осциллятора, то получается, что энергия линейного осциллятора всегда равна полуцелому значению квантов энергии. Поэтому, если у линейного осциллятора забирать кванты энергии, то в конце концов у осциллятора останется только половина кванта энергии. И вот эту половину кванта энергии забрать у осциллятора уже никак не получится, так как забрать можно только весь квант энергии целиком, а не его половину. У линейного осциллятора остаются эти полкванта энергии в качестве нулевых колебаний. (Эти нулевые колебания бывают не такими уж и маленькими. В жидком гелии их энергия больше, чем энергия кристаллизации гелия, в связи с чем, гелий не может образовать кристаллическую решетку даже при нуле абсолютной температуры.)

Передача вращения элементарных частиц

Посмотрим, как передаются собственные моменты вращения элементарных частиц. Например, пусть электрон, вращается по часовой стрелке вокруг некоторой оси (спин равен +1/2). И пусть он отдает, например, фотону при электрон-фотонных взаимодействиях, один квант вращения по часовой стрелке вокруг этой же оси. Тогда спин электрона становится равным (+1/2)-(+1)=(-1/2), то есть электрон просто начинает вращаться вокруг этой же оси, но в обратную сторону против часовой стрелки. Таким образом, хотя у электрона была половина кванта вращения по часовой стрелке, но тем не менее у него можно забрать целый квант вращения по часовой стрелке.

Если у фотона до взаимодействия с электроном был спин на ту же самую ось равен (-1), то есть равен одному кванту вращения против часовой стрелки, то после взаимодействия спин стал равен (-1)+(+1)=0. Если спин на эту оссь изначально был равен нулю, то есть фотон не вращался вокруг этой оси, то после взаимодействия с электроном фотон, получив один квант вращения по часовой стрелке, начнет вращаться по часовой стрелке с величиной одного кванта вращения: 0+(+1)=(+1).

Итак, получается, что фермионы и бозоны отличаются друг от друга еще и тем, что собственное вращение бозонов можно остановить, а собственное вращение фермионов оснановить нельзя. Фермион всегда будет иметь ненулевой момент вращения.

У такого бозона, как, например, фотон, могут быть два состояния: полное отсутствие вращения (спин относительно любой оси равен 0) и состояние вращения. В состоянии вращения фотона, величина его спина на какую-нибудь ось может принимать три значения: (-1) или 0 или (+1). Значение ноль в состоянии вращения фотона говорит о том, что фотон вращается перпендикулярно выбранной оси и поэтому отсутствует проекция вектора момента вращения на выбранную ось. Если ось выбрать по другому, то там будет спин или (+1) или (-1). Нужно различать эти две ситуации у фотона, когда вращения совсем нет, и когда вращение есть, но оно идет не вокруг выделенной оси.

Кстати, спин фотона имеет очень простой аналог в классической электродинамике. Это вращение плоскости поляризации электромагнитной волны.

Ограничение максимального спина элементарных частиц

Очень загадочным является то, что мы не можем наращивать момент вращения элементарных частиц. Например, если электрон имеет спин (+1/2), то мы не можем дать этому электрону еще один квант вращения по часовой стрелке: (+1/2)+(+1)=(+3/2). Мы можем только менять вращение электрона по часовой и против часовой стрелки. Мы также не можем сделать спин равный, например, (+2) у фотона.

В то же время более массивные элементарные частицы могут иметь больше значения момента вращения. Например, омега-минус-частица имеет спин равный 3/2. На выделенную ось этот спин может принимать значения: (-3/2), (-1/2), (+1/2) и (+3/2). Так, если омега-минус-частица имеет спин (-1/2), то есть вращается против часовой стрелки вдоль заданной оси с величиной половины кванта вращения, тогда она может поглотить еще один квант вращения против часовой стрелки (-1) и её спин вдоль этой оси станет (-1/2)+(-1)=(-3/2).

Чем больше масса тела тем может быть больше его спин. Это можно понять, если вернуться к нашему классическому аналогу спина.

Когда мы имеем дело с потоком массы, то можем наращивать момент вращения до бесконечности. Например, если мы раскручиваем твердый однородный шарик вокруг оси, проходящий через его центр массы, то по мере того, как линейная скорость вращения на "экваторе" будет приближаться к скорости света, у нас начнет себя проявлять релятивистский эффект увеличения массы шарика. И хотя радиус шарика не меняется и линейная скорость вращения не растет свыше скорости света, тем не менее, момент вращения бесконечно нарастает из-за бесконечного нарастания массы тела.

А в классическом аналоге спина этого эффекта нет, если мы делаем "честный" предельный переход, уменьшая массу каждой молекулы воды в стакане. Можно показать, что в такой модели классического спина существует предельная величина момента вращения воды в стакане, когда дальнейшее поглощение момента вращения уже невозможно.