Правила решения примеров с дробями. Возведение в степень. Как решать дроби. Примеры

Числителем, а то, на которое делят - знаменателем.

Чтобы записать дробь, напишите сначала ее числитель, затем проведите под этим числом горизонтальную черту, а под чертой напишите знаменатель. Горизонтальная , разделяющая числитель и знаменатель, называется дробной чертой. Иногда ее изображают в виде наклонной «/» или «∕». При этом, числитель записывается слева от черты, а знаменатель справа. Так, например, дробь «две третьих» запишется как 2/3. Для наглядности числитель обычно пишут в верхней части строки, а знаменатель - в нижней, то есть вместо 2/3 можно встретить: ⅔.

Чтобы рассчитать произведение дробей, умножьте сначала числитель одной дроби на числитель другой. Запишите результат в числитель новой дроби . После этого перемножьте и знаменатели. Итоговое значение укажите в новой дроби . Например, 1/3 ? 1/5 = 1/15 (1 ? 1 = 1; 3 ? 5 = 15).

Чтобы поделить одну дробь на другую, умножьте сначала числитель первой на знаменатель второй. То же произведите и со второй дробью (делителем). Или перед выполнением всех действий сначала «переверните» делитель, если вам так удобнее: на месте числителя должен оказаться знаменатель. После этого умножьте знаменатель делимого на новый знаменатель делителя и перемножьте числители. Например, 1/3: 1/5 = 5/3 = 1 2/3 (1 ? 5 = 5; 3 ? 1 = 3).

Источники:

  • Основные задачи на дроби

Дробные числа позволяют выражать в разном виде точное значение величины. С дробями можно выполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Чтобы научиться решать дроби , надо помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, общего знаменателя. Некоторые арифметические действия после выполнения требуют сокращения дробной части результата.

Вам понадобится

  • - калькулятор

Инструкция

Внимательно посмотрите на числа. Если среди дробей есть десятичные и непрвильные, иногда удобнее вначале выполнить действия с десятичными, а затем перевести их в неправильный вид. Можете перевести дроби в такой вид изначально, записав значение после запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, разделив числа выше и ниже на один делитель. Дроби, в которых выделяется целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к результату числитель. Данное значения станет новым числителем дроби . Чтобы выделить целую часть из первоначально неправильной дроби , надо поделить числитель на знаменатель. Целый результат записать от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью возможно выполнение действий отдельно сначала для целой, а затем для дробной частей. Например, сумма 1 2/3 и 2 ¾ может быть вычислена :
- Переведение дробей в неправильный вид:
- 1 2/3 + 2 ¾ = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;
- Суммирование отдельно целых и дробных частей слагаемых:
- 1 2/3 + 2 ¾ = (1+2) + (2/3 + ¾) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

Перепишите их через разделитель «:» и продолжите обычное деление.

Для получения конечного результата полученную дробь сократите, разделив числитель и знаменатель на одно целое число, наибольшее возможное в данном случае. При этом выше и ниже черты должны быть целые числа.

Обратите внимание

Не выполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, чтобы при умножении на него числителя и знаменателя каждой дроби в результате знаменатели обеих дробей были равны.

Полезный совет

При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, или знаменатель, дроби. Например, полтора килограмма риса в виде дроби запишется следующим образом: 1 ½ кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для удобства вычислений такую дробь всегда можно записать в неправильном виде: 1 2/10 кг картофеля. Для упрощения можно сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере возможно деление на 2. В результате получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь выполнять арифметические действия, представлены в одном виде.

Условимся считать, что под "действиями с дробями" на нашем уроке будут пониматься действия с обыкновенными дробями. Обыкновенная дробь - это дробь, обладающая такими атрибутами, как числитель, дробная черта и знаменатель. Это отличает обыкновенную дробь от десятичной, которая получается из обыкновенной путём приведения знаменателя к числу, кратному 10. Десятичная дробь записывается с запятой, отделяющей целую часть от дробной. У нас пойдёт речь о действиях с обыкновенными дробями, так как именно они вызывают наибольшие затруднения у студентов, позабывших основы этой темы, пройденной в первой половине школьного курса математики. Вместе с тем при преобразованиях выражений в высшей математике используются в основном именно действия с обыкновенными дробями. Одни сокращения дробей чего стоят! Десятичные же дроби особых затруднений не вызывают. Итак, вперёд!

Две дроби и называются равными, если .

Например, , так как

Равными также являются дроби и (так как ), и (так как ).

Очевидно, равными являются и дроби и . Это означает, что если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной: .

Это свойство называется основным свойством дроби.

Основное свойство дроби можно использовать для перемены знаков у числителя и знаменателя дроби. Если числитель и знаменатель дроби умножить на -1, то получим . Это означает, что значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свой знак:

Сокращение дробей

Пользуясь основным свойством дроби, можно заменить данную дробь другой дробью, равной данной, но с меньшим числителем и знаменателем. Такую замену называют сокращением дроби.

Пусть, например, дана дробь . Числа 36 и 48 имеют наибольший общий делитель 12. Тогда

.

В общем случае сокращение дроби возможно всегда, если числитель и знаменатель не являются взаимно простыми числами. Если числитель и знаменатель - взаимно простые числа, то дробь называется несократимой.

Итак, сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Всё вышесказанное применимо и к дробным выражениям, содержащим переменные.

Пример 1. Сократить дробь

Решение. Для разложения числителя на множители, представив предварительно одночлен - 5xy в виде суммы - 2xy - 3xy , получим

Для разложения знаменателя на множители используем формулу разности квадратов:

В результате

.

Приведение дробей к общему знаменателю

Пусть даны две дроби и . Они имеют разные знаменатели: 5 и 7. Пользуясь основным свойством дроби, можно заменить эти дроби другими, равными им, причём такими, что у полученных дробей будут одинаковые знаменатели. Умножив числитель и знаменатель дроби на 7, получим

Умножив числитель и знаменатель дроби на 5, получим

Итак, дроби приведены к общему знаменателю:

.

Но это не единственное решение поставленной задачи: например, данные дроби можно привести также к общему знаменателю 70:

,

и вообще к любому знаменателю, делящемуся одновременно на 5 и 7.

Рассмотрим ещё один пример: приведём к общему знаменателю дроби и . Рассуждая, как в предыдущем примере, получим

,

.

Но в данном случае можно привести дроби к общему знаменателю, меньшему, чем произведение знаменателей этих дробей. Найдём наименьшее общее кратное чисел 24 и 30: НОК(24, 30) = 120 .

Так как 120:4=5, то чтобы записать дробь со знаменателем 120, надо и числитель, и знаменатель умножить на 5, это число называется дополнительным множителем. Значит .

Далее, получаем 120:30=4. Умножив числитель и знаменатель дроби на дополнительный множитель 4, получим .

Итак, данные дроби приведены к общему знаменателю.

Наименьшее общее кратное знаменателей этих дробей является наименьшим возможным общим знаменателем.

Для дробных выражений, в которые входят переменные, общим знаменателем является многочлен, который делится на знаменатель каждой дроби.

Пример 2. Найти общий знаменатель дробей и .

Решение. Общим знаменателем данных дробей является многочлен , так как он делится и на , и на . Однако этот многочлен не единственный, который может быть общим знаменателем данных дробей. Им может быть также многочлен , и многочлен , и многочлен и т.д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на выбранный без остатка. Такой знаменатель называется наименьшим общим знаменателем.

В нашем примере наименьший общий знаменатель равен . Получили:

;

.

Нам удалось привести дроби к наименьшему общему знаменателю. Это произошло путём умножения числителя и знаменателя первой дроби на , а числителя и знаменателя второй дроби - на . Многочлены и называются дополнительными множителями, соответственно для первой и для второй дроби.

Сложение и вычитание дробей

Сложение дробей определяется следующим образом:

.

Например,

.

Если b = d , то

.

Это значит, что для сложения дробей с одинаковым знаменателем достаточно сложить числители, а знаменатель оставить прежним. Например,

.

Если же складываются дроби с разными знаменателями, то обычно приводят дроби к наименьшему общему знаменателю, а потом складывают числители. Например,

.

Теперь рассмотрим пример сложения дробных выражений с переменными.

Пример 3. Преобразовать в одну дробь выражение

.

Решение. Найдём наименьший общий знаменатель. Для этого сначала разложим знаменатели на множители.

Калькулятор дробей предназначен для быстрого расчета операций с дробями, поможет легко дроби сложить, умножить, поделить или вычесть.

Современные школьники начинают изучение дробей уже в 5 классе, с каждым годом упражнения с ними усложняются. Математические термины и величины, которые мы узнаем в школе, редко могут пригодиться нам во взрослой жизни. Однако дроби, в отличие от логарифмов и степеней, встречаются в повседневности достаточно часто (измерение расстояния, взвешивание товара и т.д.). Наш калькулятор предназначен для быстрого проведения операций с дробями.

Для начала определим, что такое дроби и какие они бывают. Дробями называют отношение одного числа к другому, это число, состоящее из целого количества долей единицы.

Разновидности дробей:

  • Обыкновенные
  • Десятичные
  • Смешанные

Пример обыкновенных дробей:

Верхнее значение является числителем, нижнее знаменателем. Черточка показывает нам, что верхнее число делится на нижнее. Вместо подобного формата написания, когда черточка находится горизонтально, можно писать по-другому. Можно ставить наклонную линию, например:

1/2, 3/7, 19/5, 32/8, 10/100, 4/1

Десятичные дроби являются самой популярной разновидностью дробей. Они состоят из целой части и дробной, отделенные запятой.

Пример десятичных дробей:

0,2, или 6,71 или 0,125

Состоят из целого числа и дробной части. Чтобы узнать значение этой дроби, нужно сложить целое число и дробь.

Пример смешанных дробей:

Калькулятор дробей на нашем сайте способен быстро в онлайн-режиме выполнить любые математические операции с дробями:

  • Сложение
  • Вычитание
  • Умножение
  • Деление

Для осуществления расчета нужно ввести цифры в поля и выбрать действие. У дробей нужно заполнить числитель и знаменатель, целое число может не писаться (если дробь обыкновенная). Не забудьте нажать на кнопку «равно».

Удобно, что калькулятор сразу предоставляет процесс решения примера с дробями, а не только готовый ответ. Именно благодаря развернутому решению вы можете использовать данный материал при решении школьных задач и для лучшего освоения пройденного материала.

Вам нужно осуществить расчет примера:

После введения показателей в поля формы получаем:


Чтобы сделать самостоятельный расчет, введите данные в форму.

Калькулятор дробей

Введите две дроби:
+ - * :

Сопутствующие разделы.

Арифметические действия с обыкновенными дробями

1. Сложение.

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же.

Пример. .

Чтобы сложить дроби с разными знаменателями, надо привести их к наименьшему общему знаменателю, а затем сложить полученные числители и под суммой подписать общий знаменатель.

Пример.

Короче записывают так:

Чтобы сложить смешанные числа, нужно отдельно найти сумму целых и сумму дробных частей. Действие записывается так:

2. Вычитание.

Чтобы вычесть дроби с одинаковыми знаменателями, нужно вычесть числитель вычитаемого из числителя уменьшаемого и оставить прежний знаменатель. Действие записывают так:

Чтобы вычесть дроби с разными знаменателями, нужно сначала привести их к наименьшему общему знаменателю, затем из числителя уменьшаемого вычесть числитель вычитаемого и под их разностью подписать общий знаменатель. Действие записывают так:

Если нужно вычесть одно смешанное число из другого смешанного числа, то, если можно, вычитают дробь из дроби, а целое из целого. Действие записывают так:

Если же дробь вычитаемого больше дроби уменьшаемого, то берут одну единицу из целого числа уменьшаемого, раздробляют ее в надлежащие доли и прибавляют к дроби уменьшаемого, после чего поступают, как описано выше. Действие записывают так:

Аналогично поступают, когда надо вычесть из целого числа дробное.

Пример. .

3. Распространение свойств сложения и вычитания на дробные числа. Все законы и свойства сложения и вычитания натуральных чисел справедливы и для дробных чисел. Их применение во многих случаях значительно упрощает процесс вычисления.

4. Умножение.

Чтобы умножить дробь на дробь, нужно умножить числитель на числитель, а знаменатель на знаменатель и первое произведение сделать числителем, а второе - знаменателем.

При умножении следует делать (если возможно) сокращение.

Пример. .

Если учесть, что целое число представляет собой дробь со знаменателем 1, то умножение дроби на целое число и целого числа на дробь можно выполнять поэтому же правилу.

Примеры.

5. Умножение смешанных чисел.

Чтобы перемножить смешанные числа, нужно предварительно обратить их в неправильные дроби и потом перемножать по правилу умножения дробей.

Пример. .

6. Деление дроби на дробь.

Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой на числитель второй и первое произведение записать числителем, а второе - знаменателем.

Пример. .

По этому же правилу можно выполнять деление дроби на целое число и целого на дробь, если представить целое число в виде дроби со знаменателем 1.

Примеры.

7. Деление смешанных чисел.

Чтобы выполнить деление смешанных чисел, их предварительно обращают в неправильные дроби и затем делят по правилу деления дробей.

Пример. .

8. Замена деления умножением.

Если в какой-нибудь дроби поменять местами числитель и знаменатель, получится новая дробь, обратная данной. Например, для дроби обратная дробь будет .

Очевидно, что произведение двух взаимно обратных дробей равно 1.

  1. Нахождение дроби от числа.

Существует много задач, в которых требуется найти часть или дробь данного числа. Такие задачи решают умножением.

Задача. Хозяйка имела 20 руб.; их она израсходовала на покупки. Сколько стоят покупки?

Здесь требуется найти числа 20. Сделать это можно так:

Ответ. Хозяйка израсходовала 8 руб.

Примеры. Найти от 30. Решение. .

Найти от . Решение. .

  1. Нахождение числа по известной величине его дроби.

Иногда требуется по известной части числа и дроби, выражающей эту часть, определить все число. Такие задачи решаются делением.

Задача. В классе 12 комсомольцев, что составляет части всех учащихся класса. Сколько всех учащихся в классе?

Решение. .

Ответ. 20 учащихся.

Пример. Найти число, которого составляет 34.

Решение. .

Ответ. Искомое число равно .

  1. Нахождение отношения двух чисел.

Рассмотрим задачу: Рабочий изготовил за день 40 деталей. Какую часть месячного задания выполнил рабочий, если месячный план составляет 400 деталей?

Решение. .

Ответ. Рабочий выполнил часть месячного плана.

В данном случае часть (40 деталей) выражено в долях целого (400 деталей). Говорят также, что найдено отношение числа изготовленных за день деталей к месячному плану.

  1. Превращение десятичной дроби в обыкновенную.

Чтобы преобразовать десятичную дробь в обыкновенную, ее записывают со знаменателем и, если возможно, сокращают:

Примеры.

  1. Превращение обыкновенной дроби в десятичную.

Существует несколько способов превращения обыкновенной дроби в десятичную.

Первый способ. Чтобы обратить обыкновенную дробь в десятичную, нужно числитель разделить на знаменатель.

Примеры. .

Второй способ. Чтобы превратить обыкновенную дробь в десятичную, нужно помножить числитель и знаменатель данной дроби на такое число, чтобы в знаменателе получилась единица с нулями (если это возможно).

Пример.

  1. Сравнение десятичных дробей по величине . Чтобы выяснить, какая из двух десятичных дробей больше, надо сравнить их целые части, десятые, сотые и т.д. При равенстве целых частей больше та дробь, у которой десятых частей больше; при равенстве целых и десятичных - та больше, у которой больше сотых, и т.д.

Пример. Из трех дробей 2,432; 2,41 и 2,4098 наибольшая первая, так как в ней сотых наибольше, а целые и десятые во всех дробях одинаковы.

Действия с десятичными дробями

  1. Умножение и деление десятичной дроби на 10, 100, 1000 и т.д.

Чтобы умножить десятичную дробь на 10, 100, 1000 и т.д. надо перенести запятую соответственно на один, два, три и т.д. знака вправо. Если при этом не хватает знаков у числа, то приписывают нули.

Пример. 15,45 · 10 = 154,5; 32,3 · 100 = 3230.

Чтобы разделить десятичную дробь на 10, 100, 1000 и т.д., надо перенести запятую соответственно на один, два, три и т.д. знака влево. Если для перенесения запятой не хватает знаков, их число дополняют соответствующим числом нулей слева.

Примеры. 184,35: 100 = 1,8435; 3,5: 100 = 0,035.

  1. Сложение и вычитание десятичных дробей.

Десятичные дроби складывают и вычитают почти так же, как складывают и вычитают натуральные числа. Разряд записывается под разрядом, запятая - под запятой

Примеры.

  1. Умножение десятичных дробей.

Чтобы перемножить две десятичные дроби, достаточно, не обращая внимания на запятые, перемножить их как целые числа и в произведении отделить запятой справа столько десятичных знаков, сколько их было во множимом и множителе вместе.

Пример 1. 2,064 · 0,05.

Перемножаем целые числа 2064 · 5 = 10320. В первом сомножителе было три знака после запятой, во втором - два. В произведении число десятичных знаков должно быть пять. Отделяем их справа и получаем 0,10320. Нуль, стоящий в конце, можно отбросить: 2,064 · 0,05 = 0,1032.

Пример 2. 1,125 · 0,08; 1125 · 8 = 9000.

Число знаков после запятой должно быть 3 + 2 = 5. Приписываем к 9000 нули слева (009000) и отделяем справа пять знаков. Получаем 1,125 · 0,08 = 0,09000 = 0,09.

  1. Деление десятичных дробей.

Рассматривается два случая деления десятичных дробей без остатка: 1) деление десятичной дроби на целое число; 2) деление числа (целого или дробного) на десятичную дробь.

Деление десятичной дроби на целое число выполняется так же, как и деление целых чисел; получаемые остатки раздробляют последовательно в меньшие десятичные части и продолжают деление до тех пор, пока в остатке будет нуль.

Примеры.

Деление числа (целого или дробного) на десятичную дробь во всех случаях приводят к делению на целое число. Для этого увеличивают делитель в 10, 100, 1000 и т.д. раз, а чтобы частное не изменилось, в то же число раз увеличивают и делимое, после чего делят на целое число (как в первом случае).

Пример. 47,04: 0,0084 = 470400: 84 = 5600;

  1. Примеры на совместные действия с обыкновенными и десятичными дробями.

Рассмотрим сначала пример на все действия с десятичными дробями.

Пример 1. Вычислить:

Здесь пользуются приведением делимого и делителя к целому числу с учетом того, что частное при этом не изменяется. Тогда имеем:

При решении примеров на совместные действия с обыкновенными и десятичными дробями часть действий можно выполнять в десятичных дробях, а часть - в обыкновенных. Надо иметь в виду, что не всегда обыкновенная дробь может быть превращена в конечную десятичную дробь. Поэтому записывать десятичной дробью можно только тогда, когда проверено, что такое преобразование возможно.

Пример 2. Вычислить:

Проценты

Понятие о проценте. Процентом какого-либо числа называется сотая часть этого числа. Например, вместо того, чтобы сказать "54 сотых всех жителей нашей страны составляют женщины", можно сказать "54 процента всех жителей нашей страны составляют женщины". Вместо слова "процент" пишут также значок %, например 35% - значит 35 процентов.

Так как процент есть сотая часть, то отсюда следует, что процент есть дробь со знаменателем 100. Поэтому дробь 0,49, или , можно прочитать как 49 процентов и записать без знаменателя в виде 49%. Вообще, определив, сколько в данной десятичной дроби сотых частей, ее легко записать в процентах. Для этого пользуются правилом: чтобы записать десятичную дробь в процентах, надо перенести в этой дроби запятую на два знака вправо.

Примеры. 0,33 = 33%; 1,25 = 125%; 0,002 = 0,2%; 21 = 2100%.

И наоборот: 7% = 0,07; 24,5% = 0,245; 0,1% = 0,001; 200% = 2.

1. Нахождение процентов данного числа

Задача. Бригада трактористов по плану должна израсходовать 9 т горючего. Трактористы взяли соцобязательство сэкономить 20% горючего. Определить экономию горючего в тоннах.

Если в этой задаче вместо 20% написать равное ему число 0,2, получим задачу, на нахождение дроби числа. А такие задачи решают умножением. Отсюда вытекает способ решения:

20% = 0,2; 9 · 0,2 = 1,8 ( m ).

Вычисления можно записать и так:

( m )

Чтобы найти несколько процентов данного числа, достаточно данное число разделить на 100 и умножить результат на число процентов.

Задача. Рабочий в 1963 г. получал в месяц 90 руб., а в 1964 г. стал получать на 30% больше. Сколько получал он в 1964 г.?

Решение (первый способ).

1) На сколько рублей больше стал получать рабочий?

(руб.)

90 + 27 = 117 (руб).

Второй способ.

1) Сколько процентов прежнего заработка стал получать рабочий в 1964 г.?

100% + 30% = 130%.

2) Какова была месячная зарплата рабочего в 1964 г.?

(руб.)

2. Нахождение числа по данной величине его процентов.

Задача. В колхозе посеяли кукурузу на площади 280 га, что составляет 14% всей посевной площади. Определить посевную площадь колхоза.

Если в этой задаче вместо 14% написать 0,14 или , то получим задачу на нахождение числа по известной величине его дроби. А такие задачи решают делением.

Решение. 14% = 0,14; 280: 0,14 = 2000 (га). Можно это решение оформить и так:

(га)

Чтобы найти число по данной величине нескольких процентов его, достаточно эту величину разделить на число процентов и результат умножить на 100.

Задача. В марте завод выплавил 125,4 т металла, перевыполнив план на 4,5%. Сколько тонн металла завод должен был выплавить в марте по плану?

Решение.

1) На сколько процентов завод выполнил план в марте?

100% + 4,5% = 104,5%.

2) Сколько тонн металла завод должен был выплавить?

(га)

  1. Нахождение процентного отношения двух чисел.

Задача. Нужно вспахать 300 га земли. В первый день вспахали 120 га. Сколько процентов к заданию вспахали в первый день?

Решение.

Первый способ. 300 га составляет 100%, значит, на 1% приходится 3 га. Определив, сколько раз 3 га, составляющие 1%, содержатся в 120 га, мы узнаем сколько процентов к заданию вспахали земли в первый день

120: 3 = 40(%).

Второй способ. Определив, какую часть земли вспахали в первый день, выразим эту дробь в процентах.

Записываем вычисление:

Чтобы вычислить процентное отношение числа а к числу b , нужно найти отношение а к b и умножить его на 100.